
Machine Learning and other
Computational-Intelligence
Techniques for Security Applications

PhD Candidate:
Andrea Marcelli

Supervisor:
Prof. Giovanni Squillero

PhD in Computer and Control Engineering

XXXI cycle

1

Introduction and background

A study of Android banking trojans

Clustering of a 1M applications dataset

Automatic signature generation and optimization

Experimental results

Conclusions

Agenda (40 mins)

2

Acknowledgement

- The Hispasec team

- Ivan Zelinka (COST-ACTION CA15140)

- Dario Lombardo (Telecom Italia)

- A. Sánchez (Dekra)

- F. López, F. Díaz, D. García, K. Hiramoto, V. Alvarez, B. Quintero (VT, Google)

- @emdel (Talos)

3

INTRODUCTION AND
BACKGROUND

4

Introduction

Automation in the AV industry is essential:
to provide fast coverage
to scale (> 1M new binaries every day received from an AV company)

Some previous researches oversimplify the problems:
no ground truth
no correct labelling
packing / obfuscation
same campaign, multiple stages

Automation should aim to assist researchers, replacing them is currently not possible.

I studied some key problems of the AV industry and provided real-world solutions
I spent about 4 months in an AV company supported by COST ACTION CA15140.

5

About Android

6

Android apps are APKs

An APK (i.e., the android package) contains the following folders and files:

- META-INF
- res
- AndroidManifest.xml
- classes.dex
- resources.arsc

Anatomy of an APK

7

Android components

Activities
They dictate the UI and handle the user interaction to the smartphone screen

Services
They handle background processing associated with an application

Broadcast Receivers
They handle communication between Android OS and applications

Content Providers
They handle data and database management issues.

An Android app requests permissions to access sensible resources.
Intents are used as high level IPC.

8

How many applications?

Koodous

~50M apps
~14M malware
+20k-50k every day

GooglePlay

~2.7M apps in
June 2019

https://www.statista.comhttps://koodous.com/

9

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://koodous.com/

Static analysis
Does not require to execute the application
Fast, but vulnerable to obfuscation
e.g., Analysis of manifest, Java decompiled code, and strings (Androguard).

Dynamic analysis
Requires to run the application in a sandbox, but it can be detected
Expensive and it follows one execution path only
The analysis is precise
e.g., Frida-based emulators, Xposed (CuckooDroid).

Both of them are required.

Application analysis

10

A STUDY OF ANDROID BANKING
TROJANS

Andrea Atzeni, Fernando Díaz, Francisco López, Andrea Marcelli, Antonio Sánchez, and Giovanni Squillero. The rise
of android banking trojans. IEEE Potentials, 2019.

11

Timeline

12

Modus operandi

Infection

Persistence
Anti-analysis techniques
Privilege escalation

Communication
C&C

Attack
The overlay attack
SMS spoofing
The social engineering role

13

Visual Analysis
Hundreds of Android applications
contacting tens of different domains,
which resolve to the same address.

Uncovering new variants is possible
thanks to the graph analysis.

Unpublished algorithm for node ranking
based on known detection information.

Detection

14

CLUSTERING A 1M
APPLICATIONS DATASET

Andrea Atzeni, Fernando Díaz, Andrea Marcelli, Antonio Sánchez, Giovanni Squillero, and Alberto Tonda. Countering
android malware: A scalable semi-supervised approach for family-signature generation. IEEE Access

15

No a priori information about the number of clusters and their composition

Real data contains outliers

Process 1M dataset:
About 1 day of Windows binaries
About 1 month of new Android applications.

Requirements

16

Density based

HDBSCAN
Enhanced version of DBSCAN.

In low dim space has a complexity of
O(n*log(n)) and has a space
requirement of O(n).

Edit distance gives the best results

min_clust_size = 2, min_points = 2

17

Feature selection

35 statistical properties from the static
and dynamic analysis of an application

Androguard:
from the manifest
from the code analysis

Sandbox:
I/O file system
Networking

18

Iterative clustering

The dataset D is divided into m partition

Each partition di is clustered individually

O is the union of the outliers oi found in each iteration

19

Family type

The original dataset is divided in three
portions.

Each cluster is one of the 7 types.

This allows to automatically convict new
applications and prioritize the work.

It can reduce 1M apps to few thousands
interesting samples.

20

AUTOMATIC SIGNATURE
GENERATION AND OPTIMIZATION

Andrea Atzeni, Fernando Díaz, Andrea Marcelli, Antonio Sánchez, Giovanni Squillero, and Alberto Tonda. Countering
android malware: A scalable semi-supervised approach for family-signature generation. IEEE Access

Eliana Giovannitti, Luca Mannella, Andrea Marcelli, and Giovanni Squillero. Evolutionary antivirus signature optimization. In
2019 IEEE Congress on Evolutionary Computation (CEC), 2019

21

What is a malware signature?

A unique pattern that indicates the presence of malicious code

As malware evolves, new signatures need to be generated frequently

Syntactic signatures are based on unique sequences of instructions or strings
* this is where the most of the existing tools and researches focus on

Semantic signatures provides an abstraction of the program behavior

In this context, malware “signatures” and “rules” have the same meaning.

22

“YARA is to files what Snort is to network traffic” Victor M. Alvarez

Designed to be fast.

One of the two most-used languages to write malware signatures

Natively supports syntactic signatures (strings + regex + hex)

Semantic signatures are defined through custom modules.

About YARA

23

An example of YARA signature

24

The process to generate a signature should be fast (e.g., ~ 5 min for 100 samples)

The algorithm should scale up to few thousands of input samples

Limit FPs

Avoiding FPs should not be related to number of samples input

The signature should catch other variants too.

Requirements

25

Cluster of
APKs or
PE files

The framework workflow

Features
extraction

Clustering
(*optional)

Signature
generator

YARA rules

YaYaGenPE

Existing
YARA rules

26

Key point

INPUT IS GENERIC. OUTPUT IS A MALWARE SIGNATURE

The input is a set of Android applications (or Windows files)
It could be a set of malware or goodware, a tight or a loose cluster

The output is a set of rules that match all the files in input
If the files are more similar, less rules are generated, and they are more effective

Ruleset are converted in YARA, can be directly uploaded to VT and can be directly used
for the retrohunt.

27

Each block is a feature extracted through the analysis, or a YARA rule that matches the file

* For Android, Koodous static and dynamic analysis system provides the features
* For Windows, a custom YARA version extract all the supported features

Existing YARA rules (reduced in CNF) add expert knowledge.

1. Feature extraction

static analysis

YARA matches

PE imports
"user32.dll":"GetDlgItem"

Rule match:
"ASPAck_1061b: PEiD"

* https://github.com/erocarrera/pefile

28

Key point

FEATURES ARE GENERIC

In summary, it’s an approximation algorithm to solve an optimization problem

Features can be anything. A set of features simply identify a malware sample
Anything can be used as far as it produces a valid signature

Strings, binary patterns, regex can be easily added in the features extraction phase.

29

2. Clustering

It reduces the complexity of signature generation process
Allow the framework to scale with 1000+ inputs

2 approaches: density based (HDBSCAN) and unsupervised decision tree

Each cluster is the input of the signature generation algorithm.

30

UDT: Unsupervised decision tree

Each cluster is splitted into two new ones basing on the value of a single feature

The best best splitting feature is the one that maximise the distance among centroids Cluster
centroids are approximated, and Jaccard distances is used

The stopping criterion is the distance between centroids (experimentally set)

The splitting feature can be easily added to the generated rules
*Few features can be included in the YARA rule with the “not” logic operator.

31

pe.imports("user32.dll","ReleaseDC")

pe.os_version.minor == 0 pe.resources[0].length==308

pe.number_of_sections == 4 rule:shimrat_0 pe.imports("user32.dll","LoadImageA") cluster 6

cluster 0 cluster 1 cluster 3cluster 2 cluster 4 cluster 5

UDT clustering

32

UDT clustering

33

3. The signature generation

Finding the optimal attributes subsets is
the goal of the signature generation
process

The problem can be reduced to a variant
of the set cover problem (NP-complete)

A dynamic greedy algorithm builds the
signature as a disjunction of clauses.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12

34

DNF

Each clause is a valid YARA rule

Each clause can be weighed: a YARA rule can be weighed too

Currently the weight is the number of features.

clause literal

35

Each signature can be expressed in DNF

Each clause can be weighed

The weight of a signature is the lowest among its clauses

Weights are automatically assigned using the Simplex Method.

Signature anatomy

36

Generality vs specificity

A weighting system evaluates the rules

The higher the weight, the less FPs
Possibly more FNs

The lower the weight, the more FPs
Possibly less FNs

37

FPs

38

Signature optimization

39

Rules could be over-specific

We need to study which combinations
of attributes create a better rule

We introduced two optimizers:
hill-climber- and EA-based.

Optimization

TMAX

Raw Optimized

40

Estimation of Distribution Algorithm (EDA)*

Solution representation:
- the individual is a YARA rule
- optimize the attribute subset of the rule

Development of a two fitness functions:
- lexicographic fitness
- heuristic fitness

* Loosely inspired by Selfish Gene theory

Evo - optimizer

41

Lexicographic fitness

Individual comparison based on:
- Number of reports matched by the YARA Rule (to maximize)
- Score of the YARA rule (to minimize – still greater than Tmin)
- Number of attributes inside the YARA rule (to minimize)

Some good results:
- ex1: rules with 3 attributes of weight 150
- ex2: rules with 4 attributes of weight 100 (e.g. 4 URL)

Results improved in respect to Basic Optimizer
but some rules are still unacceptable for human experts

42

Introduction of heuristic comparisons:
- a better rule has more categories of attributes
- e.g., if a rule contains only URL is worst than the other one

The comparisons are not “hard”, transitive property is lost

EDA (Estimation of distribution)

Soccer like scoring system for the archive

Heuristic fitness

A

C B

43

Implementation

44

YaYaGenPE is an extension of the original YaYaGen framework

2 clustering algorithms (HDBSCAN, UDT), 2 algorithms for the rule generation (clot, greedy)

Include new YARA python bindings to directly extract the features.

Supports FP exclusion from rule generation

Optimization using the Selfish Gene Extended (SGX) library

Written in Python 3.

GitHub repository: https://github.com/jimmy-sonny/YaYaGen

*YaYa is grandma in ES

Yet another YARA rule Generator

45

https://github.com/jimmy-sonny/YaYaGen

EXPERIMENTAL RESULTS

46

Clustering results

47

Iterative clustering evaluation

N Hom Comp. Hom Comp.

 50k 0.96 0.36 0.85 0.49

100k 0.96 0.35 0.85 0.49

200k 0.96 0.35 0.85 0.50

non-iterative 0.92 0.36 0.78 0.50

The non iterative version
has a lower Hom. value.

48

Automatic labelling

Num. of total applications (blue)

Num. of labelled apps (orange)

Family 1..6

N = 100k

1M dataset

49

Automatic signature generation results

50

Comparison state of the art

YaraGenerator YarGen YaBin BASS YaYaGen

Based on Strings Strings Code Code PE header +
rules

Algorithm Common strings Whitelist strings Whitelist funcs BinDiff + LCS CLUSTERING +
SET COV. + EA

Guaranteed input
coverage

NO NO YES YES YES

Packer
resistance

NO NO GOOD GOOD GOOD

Clustering NO NO NO YES YES

Scalability YES YES YES NO YES

51

Evaluation criteria

1. True positives: the number of malware samples from a specific family covered by the rule

2. False positives: the number of goodware samples classified as malicious

3. Dataset coverage: the total number of malware samples from the dataset under study that have
been covered by the rule

4. Packer resistance: the ability of the rule of matching malware samples, even though malware
has been packed.

52

Comparison input 47 samples

TOOL ALGORITHM # RULES FPs TPs

YaYaGenPE UDT + GREEDY 29 0 76

UDT + GREEDY + RULES 31 0 75

HD + GREEDY + RULES 23 0 80

YarGen RULES Z0 53 1 130

RULES Z0 + OPCODES 53 0 86

YaBin Yara (-y) 36 0 76

YaraHunt (-yh) 36 10 194

CRYPTOWALL FAMILY
MALWARE 6,881 samples
GOODWARE 3,413 samples

53

Comparison input 533 samples

TOOL ALGORITHM # RULES FPs TPs

YaYaGenPE UDT + GREEDY 65 2 854

UDT + GREEDY + RULES 64 2 896

HD + GREEDY 137 0 768

YarGen RULES Z0 328 7 705

RULES Z0 + OPCODES 321 4 687

YaBin Yara (-y) 157 0 737

YaraHunt (-yh) 157 16 937

CERBER FAMILY
MALWARE 6,881 samples
GOODWARE 3,413 samples

54

Comparison input 2478 samples

TOOL ALGORITHM # RULES FPs TPs

YaYaGenPE UDT + GREEDY 497 0 3349

UDT + GREEDY + RULES 493 0 3373

HD + GREEDY 837 0 3237

YarGen RULES Z0 2782 2 3367

RULES Z0 + OPCODES 2760 0 3226

YaBin Yara (-y) 1166 0 3172

YaraHunt (-yh) 1166 68 4027

TESLACRYPT FAMILY
MALWARE 6,881 samples
GOODWARE 3,413 samples

55

Retrohunt evaluate FPs and TPs

Family Algorithm Input size Total matches* TP FPs

OlympicDestroyer UDT + GREEDY + RULES 22 143 100% 0

Sagecrypt HD + CLOT + RULES 47 136 100% 0

Crowti UDT + GREEDY + RULES 75 66 100% 0

Scatter UDT + GREEDY 12 57 86% 8

Scatter UDT + GREEDY + RULES 12 35 88% 4

Shiz UDT + CLOT + RULES 104 12 100% 0

* Using a dataset of ~100 TB
56

Packer UPX malware rules vs. UPX goodware

Algorithm rule:Cerber rule:Locky rule:Upatre rule:Zerber

UDT + GREEDY 0 0 0 0

UDT + GREEDY + RULES 0 0 0 0

UDT + CLOT 0 0 0 0

UDT + CLOT + RULES 0 0 0 0

HD + GREEDY 0 0 0 0

HD + GREEDY + RULES 0 0 0 0

HD + CLOT 0 0 0 0

HD + CLOT + RULES 0 0 0 0
57

Packer UPX malware rules vs. UPX goodware

Algorithm rule:Cerber rule:Locky rule:Upatre rule:Zerber

UDT + GREEDY 0 0 0 0

UDT + GREEDY + RULES 0 0 0 0

UDT + CLOT 0 0 0 0

UDT + CLOT + RULES 0 0 0 0

HD + GREEDY 0 0 0 0

HD + GREEDY + RULES 0 0 0 0

HD + CLOT 0 0 0 0

HD + CLOT + RULES 0 0 0 0

YaYaGen rules for UPX packed
malware do not detect UPX
packed goodware

58

Signatures stats

FAMILY SIZE ALGORITHM # RULES # LITERALS (AVG) Time

Fareit 14 UDT + GREEDY 5 594 ~ 30s

Zerber 329 UDT + CLOT + RULES 36 163 ~5 minutes

HD + CLOT + RULES 86 187 ~5 minutes

Teslacrypt 2478 UDT + GREEDY + RULES 493 381 ~3-4 hours

HD + GREEDY+ RULES 850 336 ~3-4 hours

59

Signatures stats

FAMILY SIZE ALGORITHM # RULES # LITERALS (AVG) Time

Fareit 14 UDT + GREEDY 5 594 ~ 30s

Zerber 329 UDT + CLOT + RULES 36 163 ~5 minutes

HD + CLOT + RULES 86 187 ~5 minutes

Teslacrypt 2478 UDT + GREEDY + RULES 493 381 ~3-4 hours

HD + GREEDY+ RULES 850 336 ~3-4 hours

On average, the UDT
approach produces one
cluster each 5 applications

60

Signatures stats

FAMILY SIZE ALGORITHM # RULES # LITERALS (AVG) Time

Fareit 14 UDT + GREEDY 5 594 ~ 30s

Zerber 329 UDT + CLOT + RULES 36 163 ~5 minutes

HD + CLOT + RULES 86 187 ~5 minutes

Teslacrypt 2478 UDT + GREEDY + RULES 493 381 ~3-4 hours

HD + GREEDY+ RULES 850 336 ~3-4 hours

On average, HDBSCAN finds
clusters of 5 points, but
~20% are outliers

61

Signature optimization results

62

Optimization results: AVG num of literals

FAMILY TPs Non optimized HC Optimizer SGX Optimizer

Cluster 10 4/4 260 9.00 11.50

4/4 260 9.20 12.60

Cluster 20 3/4 64 20.20 39.20

3/4 64 18.20 40.90

SGX produces rules with
more literals than HC.

63

Optimization results: AVG rule score

FAMILY TPs Non optimized HC Optimizer SGX Optimizer

Cluster 10 4/4 17614 625.00 401.70

4/4 17614 597.00 401.80

Cluster 20 3/4 2073 612.30 555.00

3/4 2073 620.50 583.90

SGX produces rules with
lower scores.

64

CONCLUSIONS

65

Conclusions

Studied the Android banking trojans ecosystem

One of the first researchers to study large-scale detection systems in Android

Proposed a new signature generation algorithm for Android and Windows binaries

Implemented two new tools and developed a new extension to YARA to directly extract
features from custom modules.

66

Looking for the perfect signature: an automatic YARA rules generation algorithm in the AI-era
BSidesLV (7-8 Aug 2018)

Looking for the perfect signature: an automatic YARA rules generation algorithm in the AI-era
DEF CON 26 (9-12 Aug 2018)

Inteligencia colectiva con Koodous y YayaGen
Tassi 2018 (13 Sep 2018) - Criptored and BBVA Next Technologies

XII CCN-CERT STIC Conference (12-13 Dec 2018)
Spanish National Government CERT

Talks

67

Thank you

68

* References
Griffin, Kent, et al. "Automatic generation of string signatures for malware detection." International workshop on recent advances in intrusion
detection. Springer, Berlin, Heidelberg, 2009.

Preda, Mila Dalla, et al. "A semantics-based approach to malware detection." ACM SIGPLAN Notices 42.1 (2007): 377-388.

Perdisci, Roberto, Wenke Lee, and Nick Feamster. "Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious
Network Traces." NSDI. Vol. 10. 2010.

Faruki, Parvez, et al. "AndroSimilar: robust statistical feature signature for Android malware detection." Proceedings of the 6th International
Conference on Security of Information and Networks. ACM, 2013.

Zheng, Min, Mingshen Sun, and John CS Lui. "Droid analytics: A signature based analytic system to collect, extract, analyze and associate
android malware." Trust, Security and Privacy in Computing and Communications, 2013 12th IEEE International Conference on. IEEE, 2013.

Corno, Fulvio, Matteo Sonza Reorda, and Giovanni Squillero. "The selfish gene algorithm: a new evolutionary optimization strategy."
Proceedings of the 1998 ACM symposium on Applied Computing. ACM, 1998.

https://github.com/Xen0ph0n/YaraGenerator

https://github.com/Neo23x0/yarGen

https://github.com/AlienVault-OTX/yabin

https://www.talosintelligence.com/bass 69

